Homogenization of helical beam-like structures: application to single-walled carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Single - Walled 4 . Single - Walled Carbon Nanotubes
Single-walled carbon nanotubes (SWCNTs) are hollow, long cylinders with extremely large aspect ratios, made of one atomic sheet of carbon atoms in a honeycomb lattice. They possess extraordinary thermal, mechanical, and electrical properties and are considered as one of the most promising nanomaterials for applications and basic research. This chapter describes the structural, electronic, vibra...
متن کاملCutting single-walled carbon nanotubes.
A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solu...
متن کاملSingle-Walled Carbon-Nanotubes-Based Organic Memory Structures.
The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal-insulator-semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated alumini...
متن کاملAOT dispersed single-walled carbon nanotubes for transistor device application
The precise placement of single-walled carbon nanotubes (SWNTs) in device configurations has been accomplished by AC dielectrophoresis using a biomimetic surfactant, dioctyl sodium sulfosuccinate (i.e. AOT) dispersed SWNTs. To better serve the utilization of SWNTs/AOT for device fabrication, the dispersion of SWNTs in AOT aqueous solutions was investigated at different micellar concentrations a...
متن کاملThermal conductivity of single-walled carbon nanotubes
We have measured the temperature-dependent thermal conductivity k(T) of crystalline ropes of singlewalled carbon nanotubes from 350 K to 8 K. k(T) decreases smoothly with decreasing temperature, and displays linear temperature dependence below 30 K. Comparison with electrical conductivity experiments indicates that the room-temperature thermal conductivity of a single nanotube may be comparable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mechanics
سال: 2007
ISSN: 0178-7675,1432-0924
DOI: 10.1007/s00466-007-0189-3